•  

    * 01:56 présentation
        * 04:12 introduction
        * 14:46 Les vecteurs de médicaments
        * 11:17 Exemple des métastases hépatiques
        * 08:45 La diffusion des nanoparticules dans l'endothelium cancéreux
        * 10:12 L'adressage moléculaire
        * 08:25 Ciblage des compartiments cellulaires
        * 01:02 Conclusion
        * 09:16 Questions


    votre commentaire
  • Les nano-objets individuels

    Les Molécules-machines C. Joachim, CEMES-CNRS, Toulouse A la fin du 19eme siècle, J.C. Maxwell rêvait déjà de machines de la taille d'une molécule avec son célèbre démon. Nous montrerons que de nos jours, nous pouvons manipuler les molécules une par une, échanger de l'information avec une seule et même molécule dûment identifiée et que la synthèse chimique a atteint une extraordinaire maîtrise de la forme et de la fonctionnalité à donner à cette molécule. Nous présenterons des molécules qui remplissent, chacune, le rôle de dispositifs que nous connaissons bien: interrupteurs ou transistors moléculaires pour l'électronique, roues et cliquets moléculaires pour la mécanique. Quelles soient manipulées dans le vide, sur une surface ou dans un liquide, nous pourrons bientôt synthétiser et contrôler des machines ultra-miniaturisée faite d'une seule molécule comme des nano-machines à calculer et des nano-robots moléculaires. Il nous faudra bien sur progresser dans la manière dont nous échangeons de l'information avec une seule molécule. Enfin, nous montrerons comment la demande technologique du siècle passé pour des machines miniatures a ouvert un nouveau champ à la science contemporaine avec la réalisation de nano-expériences en manipulant les atomes un par un et avec la conception de nano-appareils de mesure de la taille d'une molécule. Ref : La Recherche, n° de Novembre 2001 Pour La Science, n° de Décembre 2001 « Nanocomposants et Nanomachines » Volume Arago 26, OFTA 2001


    votre commentaire
  • Les nanotechnologies: la révolution bientôt chez vous.

    Introduction aux nanotechnologies

    Générique

    Didier Stievenard UMR 8520 - IEMN USTL TV SEMM


    votre commentaire
  • Qu'entend-on par nanotechnologies ?

    Que sont les Nanotechnologies ? Imaginez que l'on puisse fabriquer les matériaux, les objets et les dispositifs dont nous avons besoin avec autant de précision que la Nature lorsqu'elle construit une cellule, un organe ou un organisme : en choisissant chaque molécule qui entrera dans la construction de l'édifice, en choisissant la manière de les assembler, en choisissant la manière de construire et d'emboîter des niveaux de plus en plus complexes d'organisation. La nature même de ce que nous fabriquons en serait changée. Non pas que nous donnerions vie à nos créations, mais leurs caractéristiques et les fonctions que l'on pourrait en attendre seraient infiniment plus riches que celles que nous connaissons. Construire un matériau aussi solide et résistant au choc que la nacre, un actionneur qui serait un véritable muscle artificiel, un filtre aussi efficace et peu énergivore que le rein, un tissus dont les caractéristiques changeraient en fonction de la température et de l'humidité, des capsules moléculaires capables de délivrer un médicament sur une cible précise, un anticorps artificiel capable de détecter des cellules malignes et de les éliminer, un calculateur dont le coeur serait constitué de quelques molécules ou même d'une seule d'entre elles,... Nous sommes encore loin de la plupart de ces réalisations, mais la décennie qui vient de s'écouler a vu de tels progrès dans les deux éléments indispensables -la maîtrise du très petit et la maîtrise du complexe- que l'on peut raisonnablement espérer y arriver. On sait désormais, grâce aux microscopes à effet tunnel et à force atomique, non seulement « voir » les atomes, mais aussi les manipuler un par un, explorer tous les recoins d'une molécule ou encore la déformer pour étudier sa réaction, ou encore y accrocher un prolongement artificiel. On sait marier la chimie du carbone -celle des molécules et du monde vivant- avec la chimie du monde minéral. On connaît aussi de mieux en mieux la sociologie des molécules, les lois qui régissent la manière dont elles vont s'assembler entre elles pour former des entités plus grosses : des membranes, des capsules,... On a compris comment les propriétés d'un petit morceau de matière changent lorsque sa taille devient très petite et on en a tiré profit pour fabriquer de nouvelles briques pour la construction des matériaux. Les nanotechnologies constituent les différentes facettes de cette démarche, qui change fondamentalement notre rapport à la matière.


     

        * 03:34 Présentation
        * 04:57 Introduction
        * 09:35 La maîtrise des petites échelles
        * 13:03 La phase de construction
        * 03:38 Les nanotubes de carbone
        * 08:09 Quelques applications
        * 15:16 Le monde moléculaire
        * 13:03 L'autoassociation
        * 11:29 Questions

     


    votre commentaire
  • Nano-électronique et informatique

    Les révolutions de l' information et des communications sont un des faits marquants du siècle et vont continuer à bouleverser dans ce nouveau siècle tous les domaines de l'activité humaine, y compris nos modes de vie. Ces révolutions sont nées du codage de l'information sous forme de paquets d'électrons (les " grains " d'électricité) ou de photons (les " grains " de lumière) (quelques dizaines de milliers de chaque pour l'élément d'information, le " bit "), et la capacité de manipuler et transmettre ces paquets d'électrons ou de photons de manière de plus en plus efficace et économique. À la base de cette capacité se trouvent les matériaux semi-conducteurs. Rien ne prédisposait ces matériaux à un tel destin : ils ont des propriétés " classiques " médiocres, que ce soit mécaniques, thermiques, optiques ou électriques. C'est justement les propriétés moyennes des semi-conducteurs qui les rendent " commandables " : par exemple, leur comportement électrique a longtemps semblé erratique, car très sensible aux " impuretés ". Cette capacité à changer de conductivité électrique, devenue " contrôlée " par la compréhension physique des phénomènes et l'insertion locale d'impuretés chimiques, permet de commander le passage de courant par des électrodes. On a alors l'effet d'amplification du transistor, à la base de la manipulation électronique de l'information. La sensibilité des semi-conducteurs aux flux lumineux en fait aussi les détecteurs de photons dans les communications optiques, et le phénomène inverse d'émission lumineuse les rend incontournables comme sources de photons pour les télécommunications, et bientôt pour l'éclairage. Les progrès des composants et systèmes sont liés aux deux démarches simultanées d'intégration des éléments actifs sur un même support, la " puce ", et de miniaturisation. Une des immenses surprises a été le caractère " vertueux " de la miniaturisation : plus les composants sont petits, meilleur est leur fonctionnement ! On a pu ainsi gagner en trente-cinq ans simultanément plusieurs facteurs de 100 millions à 1 milliard, en termes de complexité des circuits, réduction de coût (la puce de plusieurs centaines de millions de transistors coûte le même prix qu'un transistor dans les années 60), fiabilité, rendement de fabrication. Le problème des limites physiques est cependant aujourd'hui posé : jusqu'où la miniaturisation peut-elle continuer ? Combien d'atomes faut-il pour faire un transistor qui fonctionne encore ? Y-a t'il d'autres matériaux que les semi-conducteurs qui permettraient d'aller au delà des limites physiques, ou encore d'autres moyens de coder l'information plus efficaces que les électrons ou les photons ? Ce sont les questions que se pose aujourd'hui le physicien, cherchant à mettre en difficulté un domaine d'activité immense qu'il a contribué à créer. En savoir plus : http://pmc.polytechnique.fr/ weisbuch/microelectronique

    *    01:23  Présentation
        * 05:16 Introduction
        * 13:06 Les premiers pas
        * 10:41 La miniaturisation
        * 04:33 La fabrication des transistors
        * 07:14 L'utilisation des molécules
        * 08:44 Les effets de la miniaturisation
        * 03:39 Le stockage de l'information
        * 03:31 Conclusion
        * 07:53 Questions, partie 1
        * 04:26 Questions, partie 2


    votre commentaire


    Suivre le flux RSS des articles de cette rubrique
    Suivre le flux RSS des commentaires de cette rubrique